

Available online at www.sciencedirect.com

Catalysis Today 100 (2005) 303-307

Influence of BaO on Pd/Al₂O₃-based catalysts in C₂H₄ and CO oxidation as well as in NO reduction

Tanja Kolli^{a,*}, Katariina Rahkamaa-Tolonen^b, Ulla Lassi^{a,c}, Auli Savimäki^b, Riitta L. Keiski^a

^aDepartment of Process and Environmental Engineering, University of Oulu,
P.O. Box 4300, FIN-90014 Oulu, Finland

^bECOCAT Oy, Catalyst Research, Typpitie 1, FIN-90650 Oulu, Finland

^cCentral Ostrobothnia Polytechnic, Department of Technology, FIN-67100 Kokkola, Finland

Available online 30 December 2004

Abstract

In this study, Pd/Al_2O_3 and $Pd/BaO/Al_2O_3$ metallic monoliths were used to investigate the effect of BaO in C_2H_4 and CO oxidation as well as in NO reduction. A FT-IR gas analyser was used to study the activity of the catalysts. Several activity experiments carried out with dissimilar feedstreams revealed that BaO enhances CO and C_2H_4 oxidation as well as NO reduction reactions in rich conditions. This effect is due to BaO, which causes a decrease in the ethene poisoning of palladium. In lean conditions BaO is present in the form of Ba(OH) $_2$ which reacts with oxidised NO releasing water. Therefore, NO was stored during the lean reaction.

Keywords: Barium oxide (BaO); Carbon monoxide; Ethene; Nitrogen oxides; Palladium

1. Introduction

Automotive exhaust gases contain harmful oxidation and reduction products such as carbon monoxide (CO), nitrogen oxides (NO_x), and unburned hydrocarbons (HCs). Under lean operating conditions, conventional three-way catalysts (TWCs) are not efficient enough to clean NO_x from exhaust gas streams. The removal of NO_x from the exhaust gas is significant because nitrogen oxides are suspected to cause many health and environmental problems [1]. Moreover, the legislation concerning emission control is increasingly stringent, and therefore, it is necessary to discover new improvements to the performance of the catalysts to remove all the pollutants present in the exhaust gases.

Promoters are used to improve the properties of a catalyst such as activity, selectivity, and stability. Recently, barium oxides (BaO) are studied as a NO_x storage material [2–8]. The NO_x storage reduction (NSR) concept is based on lean operating and short rich operating cycles in the engine [2].

During the lean period, NO_x is oxidised over a noble metal catalyst and then stored on a storage compound (such as on BaO, BaCO₃ or Ba(OH)₂) as nitrite and nitrate compounds (Ba(NO₂)₂ and Ba(NO₃)₂) [3]. During the short rich period, these compounds are released and diffused on noble metal sites and reduced to N_2 . The NO_x storage capacity is enhanced with the increasing alkalinity of the element. The problem of a strong alkaline catalyst is that the conversion of hydrocarbons is reduced [4]. Under the lean conditions, it has been shown that NO_2 has a crucial role in the storage of NO_x [9]. The oxidation of NO is higher on Pt-containing catalysts than on Pd-based catalysts [9]. However, Pd catalysts have significant catalytic properties, such as a high three-way catalytic activity and an excellent light-off characteristic [10].

The aim of this investigation was to study the role of BaO in CO and C_2H_4 oxidation as well as in NO reduction reactions over Pd/Al_2O_3 containing catalysts. The research was carried out by performing activity experiments in a fixed-bed catalytic reactor by using several model reactions. The catalytic activities of the Pd/Al_2O_3 and $Pd/BaO/Al_2O_3$ catalysts were measured and compared.

^{*} Corresponding author. Tel.: +358 8 553 2362. E-mail address: tanja.kolli@oulu.fi (T. Kolli).

2. Experimental

Metallic monoliths, Pd/Al₂O₃ and Pd/BaO/Al₂O₃, were used to study the NO reduction as well as CO and C₂H₄ oxidation. The amount of Pd in the washcoat was 1 wt.% in both cases. The BaO content in the washcoat was 2 wt.%. The FT-IR (GasmetTM FT-IR Gas Analyser) was used to analyse the gaseous compounds: C₂H₄, H₂O, CO, CO₂, NH₃, NO, N2O, and NO2. The nitrogen balance was calculated as follows: $N_{bal} = NO_{inlet} - NO_{outlet} - NO_{2 outlet} - 2N_2O_{outlet}$ [5]. Oxygen concentration was determined by using a paramagnetic oxygen analyser (ABB Advance Optima). For the determination of the palladium metal dispersion, CO chemisorption measurements were carried out at room temperature by the volumetric adsorption method using a sorptometer (Carlo Erba Sorptomatic 1990). The dispersion values were 18% and 12% for the Pd/Al₂O₃ and Pd/BaO/ Al₂O₃ catalysts, respectively. The Pd particle size was estimated to be about 6 and 10 nm for the Pd/Al₂O₃ and Pd/ BaO/Al₂O₃ catalysts, respectively.

Prior to each experiment the catalyst was pretreated with oxygen. The catalyst chamber was heated in a nitrogen flow from room temperature to 500 °C with a heating rate of 10 °C/min. The catalyst was oxidised (50 ml/min air) for 20 min. Then, the catalyst was cooled down to room temperature under an air flow. The reaction chamber was rinsed with a nitrogen flow for a few minutes.

The reaction chamber was rinsed with the reaction gas mixture for 5 min at room temperature before increasing temperature up to 500 °C with the linear heating rate of 10 °C/min [11].

Four model reactions $(C_2H_4 + NO, C_2H_4 + NO + O_2, CO + C_2H_4 + NO and CO + C_2H_4 + NO + O_2)$ were studied. The redox characteristics of the gas mixture were identified by the stoichiometric number, S (oxidising–reducing components ratio), calculated using Eq. (1).

$$S = \frac{[O_2] + [NO]}{[CO] + 3[C_2H_4]}$$
 (1)

In the feed gas mixture, the following constant concentrations were used: 0.05 vol.% C_2H_4 , 0.09 vol.% NO, and 1 vol.% CO. Nitrogen was used as an inert carrier gas, balancing the total flowrate at $1 \text{ dm}^3/\text{min}$ corresponding to GHSV of $43,000 \text{ h}^{-1}$.

3. Results

3.1.
$$C_2H_4 + NO \rightarrow CO_2 + CO + NH_3 + N_2O + N_2$$

Based on Eq. (1), the C_2H_4 + NO reaction occurred under rich conditions (S=0.60). The light-off temperatures of C_2H_4 and NO were lower for the Pd/BaO/Al₂O₃ catalyst than for the Pd/Al₂O₃ catalyst (see Table 1). However, the final conversion of C_2H_4 reached the values of 82% and 88%, respectively. For both catalysts the final conversions of

Table 1 Light-off temperatures $(T^{50}$ -values $(^{\circ}C))^a$ for NO, CO and C_2H_4 in studied reactions over the Pd/Al₂O₃ and Pd/BaO/Al₂O₃ catalysts

Catalysts	Pd/Al ₂ O ₃			Pd/BaO/Al ₂ O ₃		
	C_2H_4	NO	CO	C_2H_4	NO	CO
$C_2H_4 + NO$	409	335	_	385	331	_
$C_2H_4 + NO + O_2$	272	n.d.	-	273	n.d.	_
$C_2H_4 + NO + CO$	430	375	n.d.	438	357	n.d
$\mathrm{CO} + \mathrm{C}_2\mathrm{H}_4 + \mathrm{NO} + \mathrm{O}_2$	217	n.d.	214	191	n.d.	188

In the feed gas mixture, the following constant concentrations were used: $0.05 \text{ vol.}\% \text{ C}_2\text{H}_4$, 0.09 vol.% NO, and 1 vol.% CO. n.d. = not detected, because no light-off occurred.

NO_x reached the value of 98%. A decrease in NO and C₂H₄ light-off curves was observed over the Pd/Al₂O₃ and Pd/ BaO/Al₂O₃ catalysts at around 250 °C (see Figs. 1a and 2a). The yields of CO, N₂O, N₂ and CO₂ also decreased at the same temperatures (Figs. 1a and 2a). The formation of NH₃, which started at around 270 °C, indicates with the formation of CO that C₂H₄ adsorbs and dehydrogenates on the catalyst surface. The limiting availability of oxygen explains the formation of NH₃ and CO. The oxygen which is formed as a result of NO dissociation is mostly consumed during the C₂H₄ oxidation to CO and CO₂, while a part of nitrogen reacts with hydrogen to form NH₃. Over the Pd/BaO/Al₂O₃ catalyst the maximum amounts of NH₃, N₂O and CO₂, were higher but the maximum amounts of CO and N₂ were lower than over the Pd/Al₂O₃ catalyst. The higher amount of N₂O over the Pd/BaO/Al₂O₃ catalyst compared to that over the Pd/Al₂O₃ catalyst is consistent with the results of Lietti et al. [3] who explained that the reduction of $Ba(NO_2)_2$ and Ba(NO₃)₂ species by hydrogen leads to the formation of N₂O and BaO. According to them, water is also formed in the reduction but it is adsorbed onto the Ba sites in the form of Ba(OH)₂. This may also explain why the formation of water was not observed in our measurements, and therefore, e.g. in situ DRIFT and transient studies are needed.

3.2.
$$C_2H_4 + NO + O_2 \rightarrow CO_2 + CO + H_2O + N_2O + NO_2 + N_2$$

The $C_2H_4 + NO + O_2$ reactions were studied under lean conditions (S = 6.33). Figs. 1b and 2b present the $C_2H_4 + NO + O_2$ reaction on the Pd/Al₂O₃ catalyst and on the Pd/BaO/Al₂O₃ catalyst, respectively. There were no significant differences between the light-off temperatures of C_2H_4 for the studied catalysts (see Table 1). The maximum NO conversion was a bit lower over the Pd/BaO/Al₂O₃ catalyst (21%) than over the Pd/Al₂O₃ catalyst (23%). The amount of NO₂ formed was higher for the Pd/Al₂O₃ catalyst than for the Pd/BaO/Al₂O₃ catalysts, but the amounts of N₂O and N₂ were almost the same. Instead, the formation of water over the Pd/BaO/Al₂O₃ catalysts was higher than over the Pd/Al₂O₃ catalysts. The Pd/Al₂O₃ catalyst consumed more oxygen but formed equal amounts of CO₂ than the Pd/BaO/Al₂O₃ catalyst. Formation of CO was quite low (see Figs. 1b

^a Defined as a temperature of 50% conversion of C₂H₄, NO, and CO.

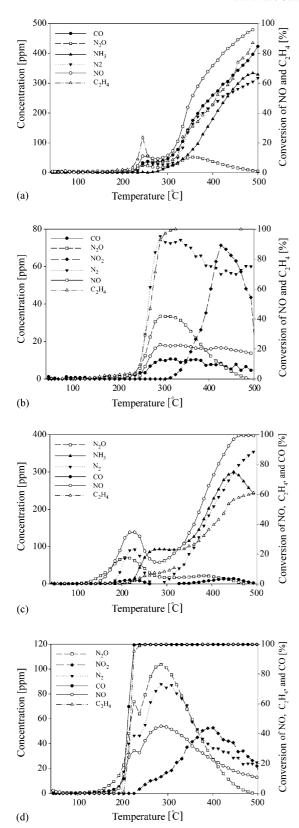


Fig. 1. The conversion curves of NO and C_2H_4 (on the right) and the concentration curves of CO, N_2O , NH_3 or NO_2 , and N_2 (on the left) for (a) $C_2H_4 + NO$ and (b) $C_2H_4 + NO + O_2$ reactions as well as the conversion curves of NO, C_2H_4 , and CO (on the right) and the concentration curves of N_2O , NH_3 or NO_2 , and N_2 (on the left) for (c) $C_2H_4 + NO + CO$ and (d) $C_2H_4 + NO + CO + O_2$ reactions as a function of temperature over the Pd/Al_2O_3 catalyst.

and 2b), because surface oxygen was in excess of accessible carbon. The reason for the lower NO₂ formation in the case of Pd/BaO/Al₂O₃ catalyst is that during the lean operation conditions Ba is probably present in the form of Ba(OH)₂ and/or BaCO₃. NO is first oxidised over the noble metal, and the NO₂ formed reacts with Ba(OH)₂ or BaCO₃ to form nitrates [3]. Ba(OH)₂ is more probable than BaCO₃ in our case because the amount of CO₂ formed during the reaction was not so high.

3.3.
$$CO + C_2H_4 + NO \rightarrow CO_2 + NH_3 + N_2O + N_2$$

The $CO + C_2H_4 + NO$ reaction occurred in rich conditions (S = 0.08). As can be seen in Table 1, the light-off temperature of NO was ca. 20 °C lower over the Pd/BaO/ Al₂O₃ catalyst than over the Pd/Al₂O₃ catalyst. Moreover, BaO enhances the CO conversion compared to the Pd/Al₂O₃ catalyst. This was observed as a higher maximum conversion of CO for the Pd/BaO/Al₂O₃ catalyst than for the Pd/Al₂O₃ catalyst. Instead, there were no significant differences between the light-off temperatures of C₂H₄ for the studied catalysts (see Table 1). The NO + CO reaction was the prevailing one at low temperatures, because the light-off of CO and NO started at around 160 °C for both catalysts (Figs. 1c and 2c). C₂H₄ started to react at 200 °C and reached finally a 60% conversion. Both catalysts had maximum conversion for NO and CO at 225 °C. At the same temperatures, the amounts of N₂O, N₂ and CO₂ had maxima. The formation of NH₃ started at 220 °C. The formation of CO₂ and N₂O started to decrease in the same temperature range, where C₂H₄ started to react and the formation of NH₃ was observed. At 250 °C, the conversions of CO and NO started to decrease and the amounts of N2, CO2, and N2O decreased. Instead, the formation of NH3 at these temperatures was more enhanced than the formation of the other products. The formation of NH₃ occurred similarly in the case of C_2H_4 + NO (Section 3.1). Over the Pd/BaO/ Al₂O₃ catalyst the maximum amounts of NH₃ and N₂O were higher, but the maximum amount of N₂ was lower than over the Pd/Al₂O₃ catalyst. The same kind of effect for N₂O was observed also in the case of the C_2H_4 + NO reaction (see Section 3.1). Equal amount of CO₂ was formed for both catalysts. If the light-off temperatures of NO and C₂H₄ are compared in the C_2H_4 + NO and $CO + C_2H_4$ + NO reactions (see Table 1), it can be concluded that the presence of CO in the gas mixture increases the competition of the same adsorption and dissociation sites. This was observed as higher light-off temperatures of C₂H₄ and NO during the $CO + C_2H_4 + NO$ reaction.

3.4.
$$CO + C_2H_4 + NO + O_2 \rightarrow CO_2 + H_2O + N_2O + NO_2 + N_2$$

The CO + C_2H_4 + NO + O_2 reaction was carried out in rich conditions (S = 0.83). Figs. 1d and 2b present the results over Pd/Al₂O₃ and Pd/BaO/Al₂O₃ catalysts, respectively.

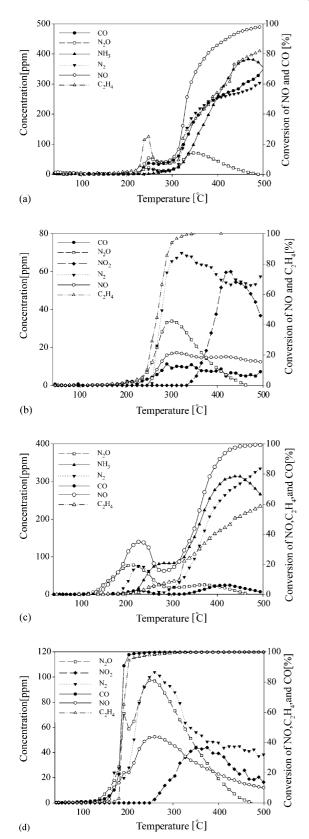


Fig. 2. The conversion curves of NO and C_2H_4 (on the right) and the concentration curves of CO, N_2O , NH_3 or NO_2 , and N_2 (on the left) for (a) $C_2H_4 + NO$ and (b) $C_2H_4 + NO + O_2$ reactions as well as the conversion curves of NO, C_2H_4 , and CO (on the right) and the concentration curves of

The light-off temperatures of C_2H_4 and CO were lower for the Pd/BaO/Al₂O₃ catalyst than for the Pd/Al₂O₃ catalyst (see Table 1). However, the maximum conversion of NO (45%) was the same for both catalysts. The amount of NO₂ formed over the Pd/BaO/Al₂O₃ catalyst was only one half of the amount of NO₂ over the Pd/Al₂O₃, and almost the same amounts of N₂ and N₂O were formed over both catalysts. This observation is the same as in the case of the $C_2H_4 + NO + O_2$ reaction (see Section 3.2). The presence of BaO in the washcoat decreases the oxygen consumption. The amount of CO₂ formed over both catalysts was equal. However, more water was formed over the Pd/BaO/Al₂O₃ catalyst than over the Pd/Al₂O₃ catalyst.

4. Discussion

The removal of nitrogen oxides from exhaust gases is a major goal when designing new catalytic materials for leanburn applications. For this reason, attention has been paid to study N-containing compounds such as NO, NO2, N2O, and N₂. In oxygen rich reactions (lean) formation of the NH₃ was not observed, because the reducing agent (C2H4) was completely oxidised. In addition, no formation of CO was observed in the $C_2H_4 + O_2$ reactions, as expected, because there was enough oxygen available on the surface for total oxidation. Based on Table 1, where the light-off temperatures (T^{50} -values) of C_2H_4 , NO, and CO are presented, it can be concluded that the reducing agents react rather with oxygen than with NO. Thus, there is a lack of reductants for the NO reactions. In addition, at low temperatures (<200 °C), CO was a more effective reductant than ethene. This effect can be seen by comparing the results presented in Figs. 1 and 2. NO reduction by propene over the Pd/Al₂O₃ catalyst goes via intermediates like NCO, acetates, formates and nitrates [12]. According to Fridell et al. [6], BaO enhances HC oxidation by causing a decrease in the propene (or propene derived species) poisoning of platinum. This effect explains the lower light-off temperatures of C₂H₄ for the Pd/BaO/Al₂O₃ catalyst than for the Pd/Al₂O₃ catalyst.

 NO_2 is a very significant compound in several NO_x removal techniques, such as in NO_x traps. In our case NO_2 was formed in reactions, where oxygen is a reactant. Formation of NO_2 occurs either via $NO + O^* \rightarrow NO_2 + ^*$ (Eley–Ridel) or via $NO^* + O^* \rightarrow NO_2^* + ^*$ (Langmuir–Hinselwood) mechanisms. Both mechanisms can occur at the same time. However, the latter mechanism is more common than the former one [2]. Important steps in NO oxidation are the adsorption and desorption of oxygen. Therefore, the detection of NO_2 is a sign of Pd–O and Pd–O₂ species on the surface [13]. The formation of Pd–O and Pd–O₂ species seems to be dependent on the acidity/alkalinity of

 $N_2O,\ NH_3$ or $NO_2,\ and\ N_2$ (on the left) for (c) $C_2H_4+NO+CO$ and (d) $C_2H_4+NO+CO+O_2$ reactions as a function of temperature over the Pd/ BaO/Al_2O_3 catalyst.

the support material [7]. Large amounts of these species can deactivate the surface of the catalyst in NO oxidation and NO_2 dissociation reactions. However, the participation of active oxygen species in NO_x storage reactions is significant [3]. The role of Al_2O_3 as an acidic support material is also significant. Al_2O_3 receives electrons from palladium, and thus the electron density in Pd decreases. During the oxidation palladium donates electrons to oxygen. When BaO, which is a more alkaline compound than alumina, is added to the Pd/ Al_2O_3 catalyst, it favours the oxidation of palladium [4].

BaO-containing catalysts consumed less oxygen from the feedstream than the Pd/Al₂O₃ catalyst, due to the oxidised form of barium (BaO) in all the cases. However, the maximum amount of water formation was high for the Pd/ BaO/Al₂O₃ catalyst. This effect may be caused by the formation of BaCO₃ and Ba(OH)₂ adsorption sites on the oxidised surface during the reaction [14]. The fresh, calcined catalyst contains BaCO₃, which in a dry environment leads to the formation of BaO. The presence of hydrogen leads to the formation of Ba(OH)₂. It has been reported by Lietti et al. [3] that NO_x storage occurs first at BaO, then at $Ba(OH)_2$, and finally at $BaCO_3$. However, during the NO_x storing process to nitrates or nitrites over the last two mentioned adsorption sites it is accompanied by the release of CO₂ and H₂O. The displacement of surface carbonate species by NO_x is likely due to the lower acidity of CO₂ than NO_x species [8].

5. Conclusions

BaO promotes the C_2H_4 and CO oxidation reactions in rich conditions via the formation of Ba(OH)₂ species. In lean conditions, BaO enhances the formation of water, because NO is stored on Ba(OH)₂. In order to fully understand the

surface phenomena and NO_x storage over these catalysts, e.g. in situ DRIFT and transient studies are needed.

Acknowledgements

This work has been carried out with the financial support of the Academy of Finland (AF project number 2001/52875) and Alfred Kordelin Foundation. The authors are grateful to ECOCAT Oy for supplying the catalysts.

References

- [1] A. Fritz, V. Pitchon, Appl. Catal. B 13 (1997) 1.
- [2] L. Olsson, Fundamental studies of catalytic NO_x removal—micro kinetic modelling, Doctoral Dissertation, Monte Carlo Simulations and Flow Reactor Experiments, Göteborg, 2002.
- [3] L. Lietti, P. Forzatti, I. Nova, E. Tronconi, J. Catal. 204 (2001) 175.
- [4] N. Takahasni, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S. Matsumoto, T. Tanizawa, T. Tanaka, S. Tateishi, K. Kasahara, Catal. Today 27 (1996) 63.
- [5] S. Salasc, M. Skoglundh, E. Fridell, Appl. Catal. B 36 (2002) 145.
- [6] E. Fridell, H. Persson, B. Westerberg, S. Johansson, M. Skoglundh, Catal. Lett. 66 (2000) 71.
- [7] L. Olsson, E. Fridell, J. Catal. 210 (2002) 340.
- [8] I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, Catal. Today 75 (2002) 431.
- [9] H. Muraki, SAE Paper No. 910842, 1991.
- [10] K. Nagashima, G. Zhang, H. Muraki, in: Proceedings of the 3rd International Conference on Synergy of Fuel and Automotive Technology for a Cleaner Environment (SAE 2004 India Mobility Conference), January 16–18, New Delhi, pp. 180–185 (2004–28–0027).
- [11] T. Kolli, K. Rahkamaa-Tolonen, U. Lassi, A. Savimäki, R.L. Keiski, Topics Catal. 30/31 (2004) 341.
- [12] M. Huuhtanen, T. Kolli, T. Maunula, R.L. Keiski, Catal. Today 75 (2002) 379.
- [13] R. Burch, J.A. Sullivan, J. Catal. 182 (1999) 489.
- [14] F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, J. Phys. Chem. B 105 (2001) 12732.